## More partial derivatives

## Questions

Question 1. Let $f(x, y)=y e^{x y}$. Use a linear approximation to approximate $f(0.01,0.98)$.
Question 2. Find the tangent plane to the graph of the function $f(x, y)=1-\sin \left(x+y^{2}\right) e^{-y}-y$ at the point $(\pi, 0, f(\pi, 0)) \in \mathbb{R}^{3}$.
Question 3. Find the tangent plane to the surface

$$
x y+y z+z x=5
$$

at the point $(1,2,1)$. Hint: You can solve for $z$ and then compute $\partial z / \partial x$ and $\partial z / \partial y$. Or you can compute these quantities via implicit differentation without explicitly solving for $z$.
(Soon we'll learn yet another way of solving this problem, in §14.6.)

Question 4. Check that $x=1$ solves the equation

$$
x^{7}-x^{6}+2 x-2=0
$$

Now consider the equation

$$
x^{7}-1.03 x^{6}+2.06 x-2=0
$$

Can you linearly approximate a solution to this equation, given that $x=1$ solved the original equation?

## HW problems

Here are a couple of problems from the current assigned homework. Consider if you'd be willing to present a solution to one of them at the board!

Problem ( $\$ 14.2$ \#13). Find the limit if it exists, or show that the limit does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}
$$

Problem (\$14.3 \#29). Find $F_{x}$ and $F_{y}$ if

$$
F(x, y)=\int_{y}^{x} \cos \left(e^{t}\right) \mathrm{d} t
$$

